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Surface-tension-driven convection in a planar fluid layer is studied by numerical 
simulation of the three-dimensional time-dependent governing equations in the limit of 
infinite Prandtl number. Emphasis is placed on the spatial scale of weakly supercritical 
flows and on the generation of small-scale structures in strongly supercritical flows. 
The decrease of the size of weakly supercritical hexagonal convection cells that we find 
is in agreement with experimental results. In the case of high Marangoni number, 
discontinuities of the temperature gradient are formed between convection cells, 
producing a universal spectrum E - k-3 of the two-dimensional surface temperature 
field. The possibility of experimental verification is discussed on the basis of 
shadowgraph images calculated from the predicted hydrodynamic fields. 

1. Introduction 
This work is a numerical study of the simplest hydrodynamical model approximating 

the original experiments of Henri Benard (1900a, b) on convection in fluid layers 
heated from below. More generally, the subject of this study is the convective flow in 
highly viscous fluids, like silicone oil, driven exclusively by thermocapillary forces. 
Although Benard himself was aware of the important role of surface tension, it was not 
until the late 1950s that the dominance of surface forces in sufficiently shallow fluid 
layers was demonstrated both experimentally (Block 1956) and theoretically (Pearson 
1958). In particular, Pearson has shown that the temperature dependence of the surface 
tension by itself is capable of producing an instability in a heated fluid layer that had 
hitherto been attributed to buoyancy forces only. Nevertheless, the overwhelming part 
of subsequent experimental and theoretical work has been focused on buoyancy-driven 
convection (' Rayleigh-BCnard convection ') rather than on surface-tension-driven 
convection (' BCnard-Marangoni convection '). The former is observed either in deep 
layers or in fluid layers enclosed between two plates, where no free surface exists. For 
a comprehensive introduction to Benard convection the reader is referred to the book 
of Koschmieder (1993) and to the review article of Normand, Pomeau & Velarde 
(1977). 

The physical understanding of surface-tension-driven convection is far less advanced 
than of buoyancy-driven convection. In particular, numerical investigations of the 
strongly nonlinear BCnard-Marangoni problem have never been undertaken. Only one 
fully numerical study (Bestehorn 1993) exists for weakly nonlinear Benard-Marangoni 
convection. Experimental studies in silicone oil under carefully controlled thermal and 
mechanical conditions have been carried out by Koschmieder (1967) and later by 

t Permanent address and address for correspondence : Forschungszentrum Rossendorf, Postfach 
5101 19, 01314 Dresden, Germany. Internet: thess@fz-rossendorf.de. 



202 A .  Thess and S .  A .  Orszag 

Koschmieder & Biggerstaff (1986), Koschmieder (1991) and Koschmieder & Switzer 
(1992) and provide an extensive background for numerical simulations. The main 
results of these experiments can be summarized as follows. In layers with thickness 
between 2 and 7 mm the critical temperature difference and the wavenumber of the 
instability agree with the linear theory of Nield (1964) which takes into account both 
surface tension and buoyancy forces. In a circular domain, the instability sets in as 
concentric rolls, which transform into a hexagonal convective structure after some 
transient time (Koschmieder 1967; Koschmieder & Biggerstaff 1986). If the thickness 
of the layer is less than 2 mm, convection appears for Marangoni numbers Ma far 
below the one predicted by Pearson (1958) and Nield (1964) with convective structures 
determined by the shape of the vessel. When the Marangoni number crosses the critical 
theoretical value, this subcritical pattern is replaced by hexagons (Koschmieder & 
Biggerstaff 1986). For slightly supercritical values of Ma, the cell size is a decreasing 
function of the temperature difference, in contrast to the increase of the cell size in 
Rayleigh-BCnard convection. The cell size in BCnard-Marangoni convection does not 
increase until Ma becomes higher than twice its critical value (Koschmieder 1991). The 
increase of the cell size in BQard-Marangoni convection is attributed to the influence 
of gravity (Koschmieder & Switzer 1992). Several experimental investigations have 
been performed (Cerisier et al. 1987; Cerisier, Perez-Garcia & Occelli 1993, and 
references therein) in an attempt to understand the transition from a regular hexagonal 
pattern to increasingly disordered patterns, employing concepts from solid state 
physics, in particular ideas about order-disorder transition, melting, and defect 
dynamics. However, there is no control of the air above the fluid layer, which makes 
a fluid-dynamical interpretation of these results difficult. In order to completely 
eliminate the influence of gravity, two experiments were performed aboard Apollo 14 
and Apollo 17 (Grodzka & Bannister 1972, 1975) where the gravity was less than 
lo-’ g .  The result was a demonstration of the generation of Benard cells by surface 
tension alone, when gravity was virtually absent. However, the quantitative results 
derived from these experiments are open to serious doubt owing to severe drawbacks 
of the space experiment: The layer was not planar, and the heating was not stationary. 

The results of the experiments raise a number of questions which cannot yet be 
answered by experiment alone : Do secondary effects like gravity, surface deformation 
and convection of air over the free surface have a significant influence on: (i) the 
selection of the hexagonal convective patterns, (ii) the decrease of the cell size for 
weakly supercritical flows, (iii) the existence of subcritical flow regimes? Furthermore, 
only a restricted range of Marangoni numbers was explored experimentally, leaving 
open the question about the existence of time-dependent or possibly turbulent surface- 
tension-driven flows for sufficiently high Marangoni numbers. Direct numerical 
simulation provides a convenient tool to answer the above questions by completely 
excluding the aforementioned secondary effects. 

Theoretical studies of the thermocapillary BCnard problem have been focused on 
analytic and semi-analytic methods, i.e. linear stability analysis (Pearson 1958; Nield 
1964; Scriven & Sternling 1964), energy stability theory (Davis 1969; Velarde & 
Castillo 1981) and bifurcation analysis (Scanlon & Segel 1967; Cloot & Lebon 1984; 
Bragard & Lebon 1993). Below Ma = 56.77 the system is unconditionally stable 
according to energy stability theory (Davis 1969). Above Ma = 79.61 the system 
becomes unstable with respect to infinitesimal perturbations with a wavenumber 
k = 1.99, as was demonstrated in the seminal paper of Pearson (1958) who assumed the 
free surface to be a non-deflecting boundary. Bifurcation theory, developed for the case 
of infinite Prandtl number by Scanlon & Segel (1967), predicts the selection of a 
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hexagonal convective pattern in favour of rolls slightly above the onset of instability. 
It also predicts that the hexagonal pattern remains stable for subcritical values of the 
Marangoni number as long as (Mu-Mu,)/Mu, > -0.023. The theory of Scanlon & 
Segel was generalized and partially corrected by Cloot & Lebon (1984) and by Bragard 
& Lebon (1993). 

Although bifurcation theory has significantly improved our understanding of 
nonlinear Binard-Marangoni convection, a mathematical inconsistency remains 
present in all bifurcation theories developed so far. On the one hand, the derivation of 
amplitude equations rests on the assumption that the amplitude of the bifurcated 
solution is O ( E ’ / ~ )  where E = (Ma-Mu,)/Mu,. On the other hand, both quadratic and 
cubic nonlinearities are retained even though the coefficients of the quadratic terms are 
O(1) which implies that the amplitude is O(1), in contradiction to the foregoing 
assumption. Direct numerical simulation provides the opportunity to perform very 
precise computations of bifurcated finite-amplitude solutions. Cloot & Lebon (1984) 
were the first to address the question of wavenumber selection in nonlinear 
BCnard-Marangoni convection. They predicted that stable hexagonal convection 
patterns must have a higher wavenumber than the unstable mode, but they did not 
predict which wavenumber from the stable band will be selected. No investigation has 
been undertaken for Marangoni numbers far above the onset of instability. In a very 
recent paper Bestehorn (1993) has investigated the weakly nonlinear BCnard problem 
using amplitude equations and fully numerical simulation. The result of this work is a 
comprehensive understanding of amplitude and phase instabilities under the influence 
of both buoyancy and surface tension forces. 

Considerable experimental and theoretical work has been devoted to thermocapillary 
phenomena in more complicated geometrics (spherical, cylindrical), to the influence of 
surface deformation, and to problems involving temperature gradients imposed along 
the free surface rather than perpendicular to it. The reader is referred to the excellent 
review article of Davis (1987) and to recent conference proceedings (Rath 1992; 
Velarde 1988) for more detailed information. 

The aim of the present paper is to develop direct numerical simulations of the 
thermocapillary BCnard problem. The chief advantage of such an approach is the 
possibility to explore flows at zero gravity and high Marangoni number - conditions 
which are difficult to realize in laboratory experiments either on Earth or in Space. 
Owing to the simple geometry of the problem, straightforward application of spectral 
methods is possible which allows simulations with high precision. In the present paper 
we shall restrict our attention to the case of high Prandtl number fluids, which covers 
the vast majority of experiments on surface-tension-driven Benard convection. The 
further restriction to the mathematical limit of infinite Prandtl number fluids leads to 
a conceptually simple model which allows a particularly efficient numerical 
implementation and, for certain values of the parameters, results in the numerical 
simulations proceeding faster than in real-life laboratory experiments. 

Convection at infinite Prandtl number is of interest for the study of Earth-mantle 
convection, a slow motion on the timescale of millions of years. Numerical models of 
different levels of complexity have been employed for the study of this phenomenon 
(Schubert 1992), the simplest ones being very similar to the model to be used in our 
work (Vincent & Yuen 1988; Travis, Olson & Shubert 1990). 

In the following section we summarize the physical assumptions of our theoretical 
model and derive the governing equations. In $ 3  we explain the numerical method. 
Sections 4 and 5 contain the results of our numerical simulations for weakly and 
strongly supercritical regimes, respectively. In $6 we demonstrate how numerical 
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simulations can be used to bridge the gap between theory and experiment by 
computing shadowgraph images from our numerically obtained temperature fields. 
Section 7 is devoted to a discussion of secondary effects and of further questions that 
would be useful to investigate. A preliminary account of the present work was 
published in Thess & Orszag (1994). 

2. Governing equations 
Consider a planar layer of fluid characterized by its thickness d, kinematic viscosity 

u,  thermal diffusivity K ,  density p and surface tension g. The layer is heated from below 
by a solid plate and has a free upper surface. The dynamics of the fluid is governed by 
the Navier-Stokes equation 

VP f a , U + ( u , v ) u  = - - + + v v ~ u + - ,  V.U = 0, 
Po Po 

with force densityf, and by the heat conduction equation 

a, T + ( ~ . v )  T = K V ~ T ,  (2) 

supplemented with appropriate initial and boundary conditions. There are two 
mechanisms which can bring the fluid into motion if the temperature field T(x,y,z) 
differs from some constant value T,. On the one hand, the buoyancy force 
f = p(x,  y ,  z)g is created due to the temperature dependence of the density which, in the 
framework of the Boussinesq approximation, can be written as 

P = P o  - Po 4 T -  T,). (3) 
On the other hand, surface forces, called thermocapillary forces, are generated due to 
the temperature dependence of the surface tension which, again in the linear 
approximation, can be expressed as 

g = g o - y ( T -  T,). (4) 
The thermal coefficient y of the surface tension, usually positive, plays a central role 
in thennocapillary convection. The continuity of the tangential stresses across the free 
surface requires any temperature variation at the surface to be compensated by viscous 
stresses, and thereby by fluid motion. We are interested in a physical situation where 
thennocapillary forces dominate, and where the fluids have a high viscosity. In this 
case, the equations of motion can be greatly simplified. The following derivation is 
based on the consideration of the relevant timescales rather than on straightforward 
non-dimensionalization, since this approach provides a better physical insight into the 
problem. 

The physical system is characterized by four different timescales. Whereas the 
viscous diffusion time 

and the thermal diffusion time 

are related to the molecular transport properties of the fluid, the buoyant timescale 

ruiSc = d 2 / v  ( 5 )  

rth = d2/K (6)  

T,, = (d/aATg)''2 

and the thermocapillary timescale 
(7) 

rtc = Go d3/yAT)'I2 (8) 
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characterize the two driving forces. The buoyant timescale can be considered as the 
time which a hot blob of inviscid fluid, differing from its environment by a density 
defect Sp = poaAT, takes to travel across the layer. Indeed, the Lagrangian equation 
of motion pojt = gdp for a small volume element directly yields the estimate (7). The 
thermocapillary timescale can be interpreted as the time needed to set into motion a hot 
spot of inviscid fluid with mass rn - po d3 by an inhomogeneity So = yATof the surface 
tension. The estimate (8) is readily derived from the equation of motion p0d3x = 60-d. 
The timescales are usually combined to give the three dimensionless parameters 

(9) 

, (10) 

P r = 7 t h = -  V 

7,tse K' 
Prandtl number 

'Tvisc ' th - agd3 AT 
7; VK 

Rayleigh number Ra = ~ - 

' d i s c  ' t h  yd AT Marangoni number Ma = ~ = -. 
e c  Po V K  

Let us estimate the order of magnitude of these timescales for typical experimental 
conditions in shallow fluid layers such as encountered in the experiments of BCnard and 
his successors. When d - lop3 m, v - lop4 m2 s-l and K - lo-' m2 s-l, then the 
viscous timescale is of the order of 0.1 s, whereas the thermal timescale is of the order 
of 10 s. Therefore we can assume 

or, in other words, Pr+Pco. This assumption is a good approximation for silicone oils 
in which Pr = 100-1000. It implies that the dynamics of the velocity field adjusts 
adiabatically to the time dependence of the temperature field, and that the time 
derivative in the Navier-Stokes equations can be neglected. Our second assumption, 

' t~isc/' th +P (12) 

or RalMa -+ 0 implies that surface forces dominate the dynamics of the fluid, and that 
gravity forces can be neglected. Under terrestrial conditions, the ratio Ra/Mu is 
roughly 0.25 for a layer of 1 mm thickness (and 2500 for a layer with d = 10 cm). 
Under microgravity conditions this ratio is of the order lop8 for d = 1 mm. Note that 
dominance of thermocapillary forces can always be achieved in sufficiently shallow 
layers. The second assumption permits us to neglect the buoyancy term in the 
Navier-Stokes equation. An estimation of the Reynolds number of the flows in the 
experimental conditions on the basis of the observed typical velocities of v < 10 mm s-' 
leads to the result that Re = 10-1-10-3. Therefore we can neglect the nonlinear term in 
the Navier-Stokes equation. It should be noted that the assumption of high Prandtl 
number does not automatically justify the omission of these terms, which may become 
important even if the dynamics of the fluid is slow or stationary. Finally, we assume 
an undeformed surface, which corresponds to the limit of strong surface tension. The 
validity of this assumption is a subtle question, discussed in depth by Scriven & 
Sternling (1964) and by Davis (1987). In the absence of gravity, the influence of surface 
deflection is characterized by the capillary number C = po K V / C T ~  d. The non-deflecting 
surface corresponds to the limit C-t  0. It was shown by Scriven & Sternling (1964) that 
weak surface deflection (C < 1) does not affect the critical Marangoni number except 
in the long-wave limit k -t 0. For weakly nonlinear convection the non-dimensional 
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d(mm) Ma C Pr 

1 51 5.1 x 10-3 1000 
2 102 2.6 x 10-3 1000 
3 153 1.7 x 10-3 1000 

TABLE 1. Marangoni number, capillary number and Prandtl number for a layer of silicone oil 
with depth d and AT = 10 K, po = 968 kg m-3, (r,, = 1.9 x lo-' kg s-', y N 5 x lo-' kg K-' s - ~ ,  
y = 10-4 m2 s-1 K = 10-7 m2 s-1 

surface deflection h(x ,y ) /d  is of the order Ma C = yAT/a,. The values of the 
Marangoni number and of the capillary number for a layer of silicone oil at AT = 10 K 
are listed in table 1. The value of Ma C = 2.6 x lo-' is very small in this case, which 
demonstrates that it is consistent to assume very small capillary number, large Prandtl 
number and Marangoni number of order unity. 

As a result, we arrive at the following set of equations approximating the dynamics 
of an infinite Prandtl number fluid without gravity : 

0 = - vp+ v v o v ,  
v-v = 0, 

a ,T+(v -V)  T = KV'T. 

The boundary conditions for the flow field are the no-slip condition 

v, = vy = v, = 0 at z = 0, (17) 

and the so-called Marangoni boundary condition 

p v a z v z  = -?az T, 

pva,vv = - y a y ~ ,  
v, = 0 

at the free upper surface z = d. The conditions (1 8) and (19), expressing the continuity 
of the tangential stress across the free surface (Landau & Lifshitz 1987), are the decisive 
ingredient for surface-tension-driven convection. Indeed, they imply that any 
inhomogeneity of the surface tension due to variations of the surface temperature 
creates a shear at the free fluid surface. These conditions provide the link between the 
temperature field and the flow field. We shall assume that the bottom of the system is 
held at a constant temperature T,, higher than the surface temperature T, = T,-AT.  
For further convenience we introduce the temperature perturbation 0 via 

T = - ( A T / d )  z + 8. (21) 

The boundary condition at the bottom reduces then to 8 = 0. At the free surface we 
apply the boundary condition 

with a heat transfer coefficient ath. A comment is in order concerning this boundary 
condition. Strictly speaking, (22) is the definition of the phenomenological parameter 
at, (see e.g. Landau & Lifshitz 1987) rather than a boundary condition. A derivation 
of (22) from first principles is only possible under the assumption that the heat loss 
is purely radiative, i.e. governed by the Stefan-Boltzmann law A,, a, T = - ST4 
( S  = 5.67 x lo-* W m-2 K-')), and that 8 is small, in which case ath = 4ST:. Although 

A,, a, B = - B (22) 
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this ‘vacuum assumption’ is the only one leading to a well-defined constant heat 
transfer coefficient, phenomenological values of uth can be used for experimental 
situations involving an air layer over the fluid surface in order to get order-of- 
magnitude estimates. 

Introducing dimensionless variables of space, time, velocity and temperature 
obtained by dividing the physical variables by d, d 2 / K ,  K/d, and AT, we obtain the 
following set of governing equations : 

0 = -vp+v2u, 

v.v = 0, 

ate + ( v .  v) e = 0, + v20, 

T = - z + B ,  
with the boundary conditions 

u , = v ~ = v ~ = ~ ? = O  at z = O  (27) 

and a, v, = -Ma a, e, (28) 

a, uy = -Ma a, 0, 

v, = 0, 

a, e+ Bie = o 
at z = 1,  where the Biot number 

Bi = ath d/Ath 

is a dimensionless measure of the heat loss. The boundary condition (3 1) permits us to 
express the Nusselt number as an integral over the surface temperature 

For later convenience we shall use the scaled Nusselt number 

,Ir, = (Nu- l ) /B i  (33 6) 

which is a function of the surface temperature only and does not contain the Biot 
number. Finally, we assume periodic boundary conditions in the horizontal direction 
with arbitrary periodicity lengths 1, and ly.  For prescribed values of the parameters Ma, 
Bi, and the aspect ratios 1, and ly,  equations (23)-(26) and the boundary conditions 
(27)-(3 1) determine completely the velocity u(x, y ,  z,  t )  and the temperature per- 
turbation 0(x, y ,  z,  t). The rest of this paper is devoted to the numerical treatment of this 
system. 

It is important to appreciate at the outset the central role of the temperature field 
O,(x,y) at the free surface. This field entirely determines the velocity field as can be 
verified by inspection of (23) and (24) and the boundary conditions (28)-(30). In 
infinite Prandtl number convection the velocity field does not have its own dynamics 
in the sense that it adjusts adiabatically to whatever input is provided by the surface 
temperature. The only nonlinear term in our equations is the convective term 
in the heat equation. A second remark is in order about the vertical vorticity 
w = a, vy - ay v,. This quantity is zero in the infinite Prandtl number limit, as can be 
readily verified by taking the curl of (23) and deriving the boundary conditions 
w(0)  = azm(l) = 0 from (27)-(30). The only solution of the equation V2w = 0 for the 
vertical vorticity is then the trivial one w = 0. 
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Let us briefly recall the physical mechanism of thermocapillary instability. Consider 
a local hot spot that has arisen at the surface due to a small deviation of the 
temperature from the basic state 0 = 0. Heat conduction tends to smooth out the spot, 
whereas thermocapillarity (cf. (28)) produces a radially outward flow above the spot 
which, by continuity, causes a vertical upflow to transport new hot fluid to the surface. 
These mechanisms counteract each other, and for sufficiently large temperature 
gradients, more precisely for Mu > 79.6 (for Bi = 0, k = 1.99), thermocapillary shear 
production ultimately dominates thermal diffusion and viscous dissipation, and 
thermocapillary convection ensues (Pearson 1958). 

3. Numerical method 
The system (23)-(31) is solved using a pseudospectral method (Canuto, Hussaini & 

Quarteroni 1987; Gottlieb & Orszag 1978) based on Fourier series in the horizontal 
directions and Chebyshev polynomial series in the vertical direction. The fact that the 
surface temperature determines the velocity field allows a very efficient solution of the 
Stokes problem (23) and (24) with the boundary conditions (27) and (28)-(30). If we 
denote the two-dimensional Fourier transform of the velocity and of the temperature 
by 6,(z), 6,(z), 6&) and 6(z),  and the horizontal wavenumber by k2 = kz +k:, the 
Stokes problem reduces to the equation 

(a: - k2)'6, = 0 
with the boundary conditions 

(34) 

from which the horizontal velocity follows as 

Note that 8, and 6, automatically satisfy the boundary conditions (27)-(29), that the 
vertical vorticity is zero, and that the (time dependent) temperature enters the Stokes 
problem only through the Fourier amplitudes of the surface temperature in boundary 
condition ( 3 5 4 .  Therefore we introduce velocity structure functions G?), 6:) and 6:) 
defined as solutions to the Stokes problem (34)-(36) with the boundary condition ( 3 5 4  
replaced by a; 8r) (1) = - 1.  These functions are precalculated at the beginning of each 
simulation using the Chebyshev-tau method and need only be multiplied with 
Mak26(1) to obtain the desired velocity field. Thus, the calculation of the velocity field 
requires 3N multiplications where N is the total number of collocation points. This 
figure should be compared with 38N multiplications necessary to solve the same 
problem including buoyancy force. In this case, the temperature field in the volume 
appears as an inhomogeneity in equation (34) which has then to be solved for each time 
step. 

The application of the pseudospectral method to (25) is straightforward. The linear 
temperature terms are treated implicitly by the Crank-Nicolson time-differencing 
scheme, whereas the nonlinear term and the vertical velocity term are computed by the 
second-order Adams-Bashforth method. 

The computations were performed on a parallel 32-processor IBM PVS 7245 
computer. Our numerical method allows an efficient parallelization since the fast 
Fourier transform, necessary to compute the nonlinear term, is the only operation that 
requires communication between processors. At a resolution of 128' x 32 collocation 
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points, one time step requires only about 0.75 s of CPU time. Recall that the relevant 
thermal diffusion timescale in the experiments is of the order of minutes. For weakly 
supercritical conditions, more precisely for Mu < 100, our numerical code proceeds 
faster than a laboratory experiment and allows real-time simulations of pattern 
formation for aspect ratios as large as 1, = 1, = 20. For Mu > 100 smaller time steps 
must be taken, and the experiment becomes faster than the numerical simulation. For 
the highest value achieved here, Mu = 2000, 20 CPU hours are necessary to simulate 
one minute of the laboratory experiment. 

The code has been tested in two different ways. First, we have tested whether the 
code reproduces correctly the primary instability described in Pearson's ( 1  958) classical 
work. To this end, we have removed the nonlinear term, measured the growth rate of 
the primary BCnard-Marangoni instability of a roll with wavenumber k = 2 and 
compared it to the exact results derived in the Appendix. For Mu = 80, Bi = 0, a 
vertical resolution of 64 collocation points and time step dt = we measure 
a growth rate of h = +0.029661914 which differs from the exact value 
A = +0.029661942 by a relative error of only 9.4 x lo-'. For Ma = 80 and Bi = 1, we 
get the numerical value A = - 2.495 780 to be compared with the theoretical growth 
rate h = - 2.495 744. This test shows that all linear terms are accurately reproduced by 
our numerical scheme. In order to test the nonlinear term we have replaced the thermal 
boundary conditions by the zero-flux conditions a, &O) = a, &I) = 0. In this case, the 
integral over the temperature is a conserved quantity. Using 

8 = 8, + cos (2xx/ l , )  cos (2x2) 

as an initial condition with the mean temperature B0 we find that this quantity is 
conserved with a precision of in the course of temporal evolution. 

The spatial resolution requirements are more severe in BCnard-Marangoni 
convection than in Rayleigh-BCnard convection because v - 8 (cf. (35d)) while 
u N 8 /k2  in Rayleigh-BCnard convection at infinite Prandtl number. Therefore, the 
Fourier amplitudes of the velocity are generally a factor k2 larger in Btnard-Marangoni 
convection, and the nonlinear term involves high-wavenumber excitations. Therefore, 
with our presently available resolution, we are limited to the range 0 < Ma c 2500 of 
Marangoni numbers. 

4. The weakly nonlinear regime 
4.1. Pattern selection 

We shall first direct our attention to the case when the Marangoni number only slightly 
exceeds its critical value Mu, = 79.6. Linear theory predicts an instability with respect 
to rolls with wavenumber k, = 1.99, arbitrary horizontal direction and, of course, any 
superposition of such rolls. In order to predict the selected pattern, the nonlinear term 
must be taken into account which can be accomplished using either bifurcation theory 
(Scanlon & Segel 1967; Cloot & Lebon 1984) or direct numerical simulation. Our 
direct simulation approach offers the advantage that a much broader range of scales 
can be excited in the initial conditions thereby introducing virtually no a priori 
restrictions on the pattern, apart from the finite aspect ratio. We initialize the 
temperature field with an initial condition of the form. 

8(x, y ,  z ,  0) = e(x, y )  2(2 - z )  ePBiz. (37) 

The field ~ ( x ,  y )  with maximum and minimum values _+ e is a random superposition of 
Fourier modes for all wavenumbers k < $kk,,,, where k,,, = nn,/l, = nn,/l, is the 
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FIGURE 1. Surface temperature fields for weakly nonlinear %nard convection: (a) for Ma = 80, 
t = 1400; (b) for Ma = 150, t = 20. The aspect ratio is 20 ( I ,  = I ,  = 20), spatial resolution is 1282 x 32, 
= 4 x 10-3. 

maximum horizontal wavenumber of the collocation method, and n is the number of 
collocation points in each horizontal direction. Most of the calculations have been 
done with Bi = 0 and aspect ratio 1, = l y  = 20. 

The evolution of the system is characterized by three phases. In an initial phase, the 
unstable Fourier components grow on the timescale 7i,,t = l / h  given by the linear 
stability theory. This phase is followed by a nonlinear saturation of the instability after 
which a more or less regular pattern is formed, and the total kinetic energy of the flow 
reaches a stationary value. The relevant timescale for the second phase is again 7Tlnst. 

The third phase, taking place on the horizontal thermal diffusion timescale, is 
characterized by slow defect dynamics and wavenumber adjustment. We did not 
systematically analyse the long-lasting third phase of evolution, which can be more 
conveniently performed in the framework of amplitude equations. The reader is 
referred to Newell, Passot & Lega (1993) for a review of mathematical models of 
pattern formation and to the recent paper of Bestehorn (1993) for a detailed discussion 
of amplitude and phase instabilities in BCnard-Marangoni convection. We focus our 
attention here onto the end of the second phase, after which the nonlinear equilibration 
has taken place. In figure 1 we plot the surface temperature field for two different values 
of the Marangoni numbers after t z 4hinst, when the kinetic energy has reached a 
stationary value. We have observed that the resulting pattern is perfectly regular as 
long as Ma < 100, while the disorder of the pattern increases rapidly if Ma becomes 
higher than 100. This is the first numerical simulation demonstrating the spontaneous 
formation of perfectly regular Btnard cells driven exclusively by thermocapillary 
forces. It is likely that the slightly disordered lattice obtained in the work of Bestehorn 
(1993) would have evolved to a perfectly ordered state if the simulations were 
continued for sufficiently long time. 

The problem of planform selection in Btnard convection has long been a theoretical 
puzzle. A complete solution of this problem, at least for the weakly supercritical case, 
would require the demonstration that for arbitrary aspect ratio 1, and I,, of the Biot 
number, and for all initial conditions the hexagonal planform is the stable attractor of 
the nonlinear governing equations. We have partially accomplished this task as 
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discussed next. In a series of numerical simulations for weakly supercritical conditions 
we have first checked that non-zero values of the Biot number (W = 0.001, 0.1, 1) do 
not affect the selection of the hexagonal planform. The only effect of the Biot number 
is to shift the critical Marangoni number and change growth rates of unstable modes 
as described in the Appendix. Secondly, we have examined the influence of the aspect 
ratios. Perfectly hexagonal patterns cannot fit into a rectangular domain unless the 
aspect ratios obey the relation ly/.lx = .\/3n/rn or l x / l y  = 2/3n/rn with integer n and m. 
Obviously, the square computational domain in figure 1 with 1, = 1, = 20 does not 
belong to this class. Nevertheless, the resulting pattern is almost indistinguishable from 
a perfectly hexagonal one. In order to understand the capability of the pattern to adapt 
to ‘imperfect’ aspect ratios, several computations were performed in a slightly 
distorted large-aspect-ratio domain with I ,  = 40 + 6 and I ,  = 40. The simulations 
performed for 6 = 0, kO.1 and k0.5 show that the pattern retains its symmetry 
properties and adapts elastically to changes in the periodicity length. If one of the 
aspect ratios, say I,, becomes very small, i.e. of the order of one, the hexagonal lattice 
is replaced by a row of rolls with axes parallel to the x-axis. This phenomenon, 
however, does not contradict the universality of the hexagonal pattern since it is due 
to the fact that the rolls compatible with the short periodicity length no longer belong 
to the linearly unstable band of wavenumbers. Finally, we have checked the 
sensitivity of the hexagonal lattice with respect to initial conditions. Replacing the 
random initial condition by a deterministic initial condition with square symmetry 
~ ( x ,  y )  - sin (kx)  sin (ky)  leads, after some transients, to a regular hexagonal pattern. 
Thus, our numerical results support the universality of the hexagonal planform in 
large-aspect-ratio Benard-Marangoni convection. 

Having characterized the ordered state, let us briefly discuss the degree of disorder 
in the patterns for increasing Marangoni number shortly after the end of the second 
phase of nonlinear equilibration. The degree of disorder in these ‘intermediate’ 
patterns, e.g. such as shown in figure I@), appears to be independent of the aspect 
ratios 1, and I,, indicating that an explanation must be sought in terms of timescales 
characterizing a single convective cell. A possible explanation of this phenomenon may 
be given on the basis of the ratio between the instability timescale 7ilzst and the vertical 
thermal diffusion time 7th - 1 if we assume that the nonlinear equilibration phase is 
characterized by local interactions between individual cells which occur within the 
vertical rather than the horizontal thermal diffusion timescale. In the case M a  = 80 
(figure 1 a)  the instability timescale is about 30 times larger than the thermal timescale 
(see table 2 in the Appendix). Therefore, thermal diffusion has enough time to eliminate 
random fluctuations of the temperature, and a regular pattern is obtained as the final 
stationary state. For Ma = 150 (figure 1 b), the instability timescale is approximately 
half the thermal diffusion time. In this case, the convective pattern is disordered in 
space. We conclude that the convective structure after nonlinear equilibration is 
hexagonal without any defects in the interval 79.6 < Mu < 100, where 7Tinst > 7th.  and 
defects are not present until M a  > 100. It should be emphasized that this is a fairly 
rough criterion for two reasons. On the one hand, the definition of the duration of the 
second evolution phase involves some ambiguity. On the other hand, a pattern which 
is disordered after nonlinear saturation does not necessarily remain disordered forever. 
A systematic investigation of the disorder in the third evolution phase would require 
very long simulations in large-aspect-ratio geometries with Marangoni numbers 
increased by small steps, which is unfortunately beyond our present numerical 
capabilities. The question whether the long-time evolution leads finally to a perfect 
hexagonal pattern was studied in the experimental work of Occelli, Guazzelli & 
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Pantaloni (1983). They found an increasing number nd of defects for increasing 
Ma, approximately described by the ‘Arrhenius law’ nd - exp(-A/€) with 
6 = (Mu - Ma,)/Ma,. Therefore, a perfectly hexagonal pattern must be considered as a 
metastable state for Ma > 100, with the tendency to develop defects as a result of small 
perturbations. Observation of perfectly hexagonal patterns by Koschmieder & Switzer 
(1992) for Marangoni numbers of twice Ma, does not contradict this statement, 
because great care was taken in these experiments to eliminate all kinds of thermal and 
mechanical perturbations. 

4.2. Properties of single hexagons and rolls 
Having identified hexagons as the dominating structures for weakly supercritical 
conditions, we turn to a more detailed characterization of a single hexagonal cell. In 
addition, we consider the properties of convection rolls for two reasons. On the one 
hand, quasi-one-dimensional convective patterns dominate in linear strips or in annuli 
when the transverse width I, << 1, and 1, - 1. In some respects, such a situation is 
similar to the conditions in the experiments of Bensimon (1988), although the 
appearance of a one-dimensional pattern in this case is likely to be a result of boundary 
conditions at lateral walls. On the other hand, the computation of the Nussel number 
allows us to compare the efficiency of heat transfer and to assess the role of the 
dimensionality of the flow. We numerically investigate single hexagons and rolls by a 
method similar to that used in experiments. Starting with an initial perturbation (37) 
with a deterministic function e(x, y )  with the symmetry of hexagons or rolls, we proceed 
with the calculation until a stationary flow is established. Then the Marangoni number 
is either decreased or increased by a small amount taking the last temperature field as 
the initial condition for the new simulation. Since we are not far away from the onset 
of instability, these measurements can be performed quickly, and we can even change 
parameters such as the periodicity length of the convective structures or the Biot 
number, which can be hardly achieved in an experiment. 

For each stationary solution we determine the kinetic energy 

the ‘thermal energy’ 

Eo = - IBad3x 
2 1 x 1 ,  

and the scaled Nussel number 

(38) 

(39) 

where 8, is the surface temperature. The results of the numerical experiments are 
summarized in figure 2, where we plot E,, Eo and Na for hexagons and rolls as a 
function of the Marangoni number. At Ma = 79.6 the hexagonal cell bifurcates 
subcritically from the purely conductive state. The subcritical regime extends down to 
Mu, = 79.0. The extension of the subcritical range (Ma,-Mu,)/Ma, = -0.0075 
should be compared with the prediction (Ma, - Ma,)/Ma, = - 0.023 of Scanlon & 
Segel (1967), based on bifurcation theory for an infinite Prandtl number fluid with 
d + m .  Given the highly simplifying assumption of infinite layer thickness, the quality 
of the prediction of bifurcation theory is remarkably good. Although the results of the 
model cannot be directly compared to our numerical findings, the kinetic energy per 
unit area of the hexagonal pattern as predicted by bifurcation analysis is in qualitative 
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ns and rolls: (a) integral velocity u = E:I2, (6) integral temperature 
perturbation 0 = E:li, (c) Nisselt number as a function of the Marangoni number. Spatial resolution 
is 32 x 64 x 32 for hexagons and 323 for rolls. 1, = I ,  = 2x/k, for rolls and 1, = 4n/-\/3kC, 1, = 4n/k, 
for hexagons with k, = 1.9929. Solid squares : hexagons, open squares : rolls. 

agreement with our numerical values. The bifurcation approach was recently extended 
to finite layer thickness by Bragard & Lebon (1993). The calculated extension 
(Ma, - Ma,)/Ma, = - 0.0056 of the subcritical domain appears to be in good 
agreement with our numerical result. 

The square roots of E, and EB, plotted in figures 2(a) and 2(b), can be considered 
as ‘integral velocity’ and ‘integral temperature’ scales. Since the velocity and 
temperature peak at the free surface, the integral scales underestimate the maximum 
velocity and temperature perturbation by approximately one order of magnitude. 
Nevertheless, that permits us to estimate the Reynolds and Ptclet numbers 
characterizing the importance of nonlinear terms in the Navier-Stokes equation and in 
the heat conduction equation. From the data of figure 2(a) the integral Reynolds 
number of the supercritical flow is evaluated as 

Re N E:lz/Pr, (41) 

yielding Re - 6 x lop4 for Ma = 80 and Pr = 1000. Thus, the omission of the nonlinear 
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FIGURE 3. (a) Surface temperature field OS(x,y) of a stationary hexagon at Ma = 100, 
(b)  temperature slice O(x, z )  of a roll at Ma = 100. Numerical parameters as in figure 2. 

term from the Navier-Stokes equation is justified a posteriori. The integral PCclet 
number Pe = ud/K, characterizing the deformation of the temperature isolines due to 
convective motion, is 

with Pe = 0.15 for Ma = 80. The surface PCclet number evaluated with the maximum 
velocity at the free surface is thus already of the order of one for weakly supercritical 
flows. Note that the Marangoni number is a PCclet number based on the 
thermocapillary velocity scale u = yAT/pv. The plot of the Nusselt number in figure 
2(c)  shows that hexagons are more efficient in enhancing heat transfer than rolls. The 
deformation of the temperature isolines due to convective motion is highlighted in 
figure 3, where we plot the surface temperature of a hexagon together with a slice of 
the temperature field of a roll. Nonlinear effects lead to an expansion of the region of 
hot upwelling fluid at the expense of cold regions, as seen by comparison of the 
hexagon in figure 3(a) with the hexagonal lattice depicted in figure 1 (a). Figure 3(b) 
shows that the isotherms become compressed in the cold region underneath the free 
surface. 

Pe N E:12 (42) 
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FIGURE 4. Decreasing cell size in BCnard-Marangoni convection. (a) Dimensionless lengthscale of 
hexagonal cells as a function of the Marangoni number. Spatial resolution is 512 x 16 x 16 for E < 0.2 
and 1024 x 32 x 16 for E > 0.2, I ,  = 50 x 4~/.\/3k,, I ,  = 4x/k,, k, = 1.9929. (b) Nusselt number as a 
function of the periodicity length for hexagons (solid squares) and rolls (open squares) for Mu = 100. 
Spatial resolution and domain size as in figure 2. 

4.3. The wavelength of supercritical hexagonal cells 
The variation with Marangoni number Ma of the size of weakly supercritical hexagonal 
patterns, which is of fundamental fluid-dynamic interest, has conflicting experimental 
results. While Koschmieder & Switzer (1992) observe decreasing cell size, Cerisier 
et al. (1987) report a monotonic increase of the cell size as a function of Ma for larger 
values of Ma. 

A straightforward way to numerically determine the wavenumber k(Ma) of 
supercritical patterns would be to conduct simulations at large aspect ratio, and to 
measure the density of cells as a function of the Marangoni number. In order to obtain 
accurate numerical results, which are not contaminated by finite-size effects, 
computations with aspect ratio 100 and total integration time of the order of the lateral 
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thermal diffusion time (lo4 in units of d 2 / K )  would be necessary. The large aspect ratio 
is necessary because the smallest change of lengthscale which can be detected is 
Alo/lo N n-’ where n is the number of convective cells in each spatial direction. Thus, 
n - 100 is necessary to detect contractions or dilatations of the pattern with a precision 
of 1 %. This task is quite expensive computationally, although our numerical method 
is capable of handling aspect ratios as large as 40 (comprising about 200 convection 
cells) in the considered parameter region. There is, however, an efficient alternative 
providing an unambiguous answer as to whether supercritical hexagonal cells are 
expanding or shrinking with increasing temperature. The method consists in 
performing the simulation in a quasi-one-dimensional domain which is sufficiently long 
in the x-direction to accommodate a multitude of hexagons, and which is sufficiently 
short in the y-direction for thermal equilibrium to proceed within the transverse 
(O(1)) thermal diffusion timescale. We have chosen a strip with length 1, = 182.02 and 
lg = 6.305 which comprises 50 elementary domains of the type depicted in figure 3 (a). 
We initialize the temperature field with random initial conditions and count the 
number N of cells after the system has settled to an ordered state consisting of 
hexagonal cells. For Mu = 80 we obtain N = 100, corresponding exactly to the number 
of cells associated with the wavenumber k,  = 1.99 of the first unstable mode. These 
cells are arranged in two rows, a part of which is shown in the upper insert of 
figure 4(u). Repeating the computations with increasing Mu, we evaluate the 
dimensionless lengthscale 1/1, = N , / N ,  under the condition that the system consists of 
two rows of cells. The use of up to 1024 collocation points in the x-direction, 
corresponding to about 20 Fourier modes per convection cell, ensures high numerical 
precision (at the expense of long simulation time). 

As the Marongoni number is increased, we observe a compression of the pattern in 
the x-direction which leads to a deformation of the equilateral triangles formed by the 
centres of the cells. As a result, the number of cells increases and their lengthscale 
decreases, as is seen in figure 4(u). Note that the system cannot continuously shrink in 
the transverse direction owing to the small transverse aspect ratio. The latter process 
proceeds discontinuously, as seen from the bend of the curve in figure 4(u). For 
E > 0.1 the cell size has sufficiently decreased for the cells to fit into the strip as an 
aligned arrangement, depicted in the lower insert of figure 4(u), rather than the 
staggered arrangement (upper insert in figure 4a). Then, the lengthscale decreases 
again continuously. The numerical results plotted in figure 4(a) demonstrate 
unambiguously that the cell size in weakly supercritical high Prandtl number surface- 
tension-driven convection is a monotonically decreasing function of the temperature. 
Therefore, our results support the experimental results of Koschmieder & Switzer 
(1992). 

For Marangoni numbers higher than 100, corresponding to the highest E in figure 
4(u), defects survive even after long evolution time, and a precise determination of the 
cell size becomes impossible. For Ma > 100, we visually observe that the ‘integral 
scale ’ of the convective structures continues to decrease until a saturation is reached 
when the cell size is of the order of the layer thickness. 

From figure 4(a) we can derive the result that d(Z/Z,)/ds z -0.5, which can be 
interpreted as a (negative) coefficient characterizing the variation of wavelength of 
hexagons. This value, however, cannot be directly compared to the experimental one 
d(l/l,)/de = Mu,d(k,/k)/dMu z = - 0.14 of Koschmieder & Switzer (1992) (at aspect 
ratio 55) since our coefficient describes the contraction of a transversely constrained 
system, whereas the experimental pattern is free in both directions. The situation is 
rather similar to the measurement of thermal expansion coefficients of liquids : the 
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radius of a spherical drop increases as d(R/R,)/dT = $a whereas the length of a fluid 
column enclosed in a pipe increases three times faster, i.e. as d(L/L,)/dT = a, where 
a is the thermal expansion coefficient of the fluid. Therefore our coefficient should be 
divided by two in order to estimate the variation of wavelength of an unconstrained 
two-dimensional pattern as -0.25. The difference with the experimental result may be 
due to the influence of buoyancy force, present in the experiments, so that (as already 
noted by Koschmieder & Switzer) the wavenumber k is a function of both Ma and Ra 
and the measured value dk/dMa = ak/aMa+ (dRa/dMa),,,,,, ak/aRa is a super- 
position of the pattern contraction due to thermocapillarity and the pattern 
expansion due to buoyancy. The influence of the buoyancy term is reinforced by the 
high value of (dRa/dMa),=,,,,, which is roughly proportional to the slope of the 
neutral stability curve dRa/dMa - - 10 calculated by Nield (1964). Therefore even a 
weak influence of gravity can affect the wavenumber of BCnard-Marangoni convection. 

The analogy between the contraction of the hexagonal pattern and the com- 
pressibility of fluids is not entirely fortuitous. We have observed that the longitudinal 
distance between the cells decreases [increases] when we increase [decrease] the 
transverse width by a factor of 1.02 [0.98], keeping the Marangoni number fixed. Thus, 
the convection pattern has the property of elasticity. 

Finally we wish to make a remark about the validity of the ‘maximum heat transfer’ 
hypothesis in thermocapillary convection, which states that the selected wavenumber 
of supercritical flow is the one maximizing the Nusselt number at a given Ma. In figure 
4(b) we plot the Nusselt number as a function of the size of a single hexagon and a 
single roll for Ma = 100. The figure clearly shows that in thermocapillary-driven 
convection smaller structures provide a more efficient heat transfer, although the 
location of the maximum of the Nusselt number does not coincide with the observed 
wavelength of the cells. The maximum heat transfer assumption does not hold in 
Rayleigh-BCnard convection, where the observed wavelengths are not the wavelengths 
which transfer the most heat. 

5. The strongly nonlinear regime 
5.1. Phenomenology 

In isothermal fluids it has proven fruitful to consider the behaviour of fluids in the limit 
of infinite Reynolds number (or v + 0) when molecular viscosity becomes irrelevant for 
the large-scale properties of the flow. In non-isothermal fluids there are two molecular 
transport coefficients, i.e. the viscosity and the thermal diffusivity, and the related 
dimensionless parameters Re = ul/v and Pe = u f / K .  Different kinds of turbulent flows 
develop depending on which of these parameters tends to infinity. Here we are 
interested in the flow for high Marangoni numbers and infinite Prandtl number which 
corresponds to Re+O and Pe+co. This case strongly differs from the ‘hard 
Rayleigh-BCnard turbulence’ (Castaign et af.  1989) in which both Re-tco and Pe+co. 
In our case, the flow is still dominated by viscosity, while the temperature isolines get 
strongly deformed and the thermal diffusivity can be neglected except in thin thermal 
layers of thickness 6 - 1/Pe. It is known both from experiments (Whitehead & Parsons 
1978) and from numerical simulations (Vincent & Yuen 1988; Travis el al. 1990) of 
Rayleigh-BCnard convection at infinite Prandtl number, that the velocity field and the 
temperature field exhibit non-trivial small-scale behaviour in the limit of high Rayleigh 
number (and thus Pe % 1). Here we shall consider the analogous question for 
thermocapillary-driven BCnard convection at high Marangoni number. 

The plot given in figure 5 provides a first glimpse of the generation of small scales 
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FIGURE 5 .  Strongly nonlinear Benard-Marangoni convection : surface temperature field of a single 
roll. Spatial resolution is 512 x 32 x 128, I, = X ,  1, = 1, Mu = 2000. 

in BCnard-Marangoni convection, showing the surface temperature field of a single roll 
at Mu = 2000. The temperature field consists of parabolic regions separated by 
increasingly sharp transition layers at the cell boundary, where the temperature 
gradient experiences a discontinuity. The width of these layers is of the order of 
6 - l /Pe .  The PCclet number, estimated on the basis of the maximum surface velocity 
difference, is of the order of 100 for the roll shown in figure 5.  Note that the Reynolds 
number is still as small as 0.1 if the fluid has Pr = 1000. The first derivative of the 
surface temperature resembles the sawtooth structure of solutions to the Burgers 
equation ut+uu, = vu,, in the limit v+O. The second derivative of the surface 
temperature consists of a sharp spike, nearly a delta function, at the location of the 
transition layer embedded in a smooth background. Indeed, the two-dimensional 
Laplacian of the surface temperature A2 Os = i3: 0, + i3; 0, is well suited to focus on the 
characterization of small-scale structures and shall be used in the following for 
visualization purposes. Moreover, this quantity is closely related to shadowgraph 
images as discussed in $6. We have noted in the preceding section that the PCclet 
number increases rapidly even for weakly supercritical values of Ma. Therefore, the 
generation of small scales can already be seen in convective flows at modest Marangoni 
number, such as Mu = 150. This is demonstrated in figure 6 (plate l), where we plot 
the two-dimensional Laplacian of the surface temperature. Blue [red] regions of A2 Os 
correspond to negative [positive] curvature of the surface temperature field 8,. For 
Mu = 80 (figure 6u) the field is essentially a superposition of three unstable modes of 
the linear theory. Indeed, the surface PCclet number in figure 6(a) is of the order of one, 
while it is 10 for Ma = 150. For Ma = 150, figure 6(b) shows that the higher velocity 
leads to a nonlinear redistribution of the temperature gradients. Narrow thermal 
boundary layers, characterized by strong positive curvature of the temperature field, 
are embedded in a smooth background. One important difference with one-dimensional 
rolls (figure 5) is the existence of points at which three thermal boundary layers coalesce 
and form strong local maxima of the curvature. In the vicinity of such a point the three- 
dimensional temperature field has the structure of a thermal plume, a localized object 
frequently encountered in thermal convection. The curvature maxima are seen as red 
spots in figure 6(b) .  They are the key features for understanding the spectrum of the 
surface temperature as will be shown in the next section. 
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Note that there is a resemblance between the nonlinear evolution of surface 
temperature and solutions to the two-dimensional modified Burgers equation 

which can be understood by evaluating the heat conduction equation (25) at the free 
surface. With free surface quantities denoted by an index s, (25)  gives 

(44) 
Recall that v,, = 0, and that v, is parallel to the surface. Since the velocity is governed 
by a linear elliptic system of partial differential equations with v = 0 at the bottom and 
an inhomogeneous boundary condition for u at z = 1, the horizontal velocity assumes 
its maximum at the free surface. Therefore, the vertical derivative a, 8, is roughly 
proportional to v,, and the Marangoni boundary condition (28), (29) becomes 

(45) 
(46) 

Thus, v, - -MaV8, ,  from which derives the similarity to the nonlinear term of the 
Burgers equation. 

5.2. The spectrum of surface temperature 
In order to understand the partition of energy between the macroscale 1 (cell size) and 
the microscale S (width of the thermal boundary layers) we consider the spectrum 

a, $ - (W2 = vA2 4 (43) 

a, e, + (8, - v) e, = A, 8, + (a; 81,. 

v,, - - M a  a, e,, 
vys - - M a  aY 8,. 

defined as an ensemble average of the complex Fourier amplitudes of the surface 
temperature. Here k = (k,, kJ  is the two-dimensional vector of horizontal wave- 
numbers. Since the temperature field is virtually time-independent after the process of 
nonlinear equilibration, we perform several independent runs with different realizations 
of the random initial conditions. After a prescribed evolution time, the Fourier 
amplitudes are normalized and the average (47) is evaluated. In figure 7 we plot two 
different realizations of A, 8, for Ma = 2000. Figure 8 shows the spectrum E(k) for one 
single surface field. In the ‘inertial range’ 1/1< k < 1/S this spectrum shows a power- 
law behaviour E - k-“ with an exponent close to 3. We have determined a = 3.1 from 
a linear regression on E(k) in the range 0.7 < log(k) c 1.4 obtained as the ensemble 
average over three runs. An explanation of this temperature spectrum, which we found 
to be insensitive to initial conditions, to the value of the Biot number as well as to the 
specific value of Ma, can be given employing ideas from ordinary fluid turbulence, 
specifically Saffman’s theory of two-dimensional turbulence. 

Saffman (1971) assumes discontinuities of the vorticity, a first velocity derivative, to 
be key features of two-dimensional turbulence. He conjectures the palinstrophy, a 
second velocity derivative, to be a random arrangement of one-dimensional delta 
functions. Such a function has a flat energy spectrum from which Saffman derives an 
E - k-4 spectrum of kinetic energy. In the present case, discontinuities of the surface 
temperature gradient between contiguous cells are formed as a result of the high PCclet 
number. Thus, the second temperature derivative A, 8, is composed of one-dimensional 
delta-functions as highlighted in figure 7. At first glance, these features seem to suggest 
an E - kP4 spectrum in analogy to the Saffman theory. The key to the understanding 
of the observed k-3 law, however, is the plumes at which three thermal boundary layers 
merge. At these points, A2 0, behaves like a two-dimensional delta-function in contrast 
to the isolated thermal layers, which requires a modification of Saffman’s arguments. 
We can assume that the field A, 8, is dominated by an irregular distribution of delta- 
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FIGURE 7. Two fields Az B,(x, y )  evolving from different realizations of the random initial 
conditions for Ma = 2000 after t = 0.07. Aspect ratios is 3, spatial resolution 12S2 x 64. 

log (4 
FIGURE 8. Spectrum of surface temperature for a single realization 

E - k-3 is drawn to guide the eye. 
for Ma = 2000. The line 

functions with the density N of the order of the basic wavenumber of the pattern and 
with intensities Ji over the plumes, i.e. 

(48) A2 8, = C Ji 6(r - ri)  N I  
i 

The contribution from the one-dimensional thermal boundary layers leads to a steeper 
spectrum, so it can be neglected. In order to calculate the energy spectrum of 8, we 
must consider the correlation function of A, 8, which has the form 
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Plate 1 

FIGURE 6. Generation of small-scale structures in BCnard-Marangoni convection: plots of A,O,(x,y) for 
(u)Mu = 80, t = 1400; (b)Mu = 150, t = 20. Aspect ratio is20, spatial resolution 12S2 X 32. Blue [red] corresponds 
to minimum [maximum] of the field. 
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Therefore 

Comparing this with the definition E(k) dk = (02)/2 leads to the result 

E(k) = N?/(2nk3) (51) 

valid in the ‘inertial’ range 1/1< log(k) < 1/S. The proper representation of the 
detailed structures of the temperature derivatives requires high numerical resolution, 
and it is not surprising that the limiting spectrum can be reached only approximately. 
In order to test the assertion about the crucial importance of the plumes, we have made 
simulations for a different geometry, i.e. a narrow strip 0 < x < 3, 0 < y < 0.3. In this 
geometry a quasi-one-dimensional structure of rolls aligned with the y-axis forms 
without plumes and produces a spectral exponent a = 4.25 which is close to 4 as is 
to be expected from one-dimensional curvature singularities. 

5.3. On the validity of amplitude equations 
In the past, direct simulation of large-aspect-ratio pattern formation in fluids was 
beyond the capacity of computers. Nonlinear amplitude equations, derived from the 
hydrodynamic equations under the simplifying assumptions of weak supercriticality 
and slow space-time variation, were the only feasible theoretical approach to large- 
aspect-ratio pattern formation. In many cases they were used beyond their 
mathematical limit of validity without the possibility to assess their predictive power. 

The present numerical simulation permits the testing of the nonlinear model 
equation 

derived by Sivashinsky (1982) for BCnard-Marangoni convection on the basis of a 
long-wave expansion. The model equation was obtained under the assumption of a 
purely two-dimensional motion confined to the (x, z)-plane, governed by equations 
(23)-(31) with the thermal boundary condition B(0) = 0 replaced by the phenom- 
enological boundary condition 

(53) 

Here b can be considered as the Biot number of the bottom. Equation (52) was derived 
under the additional assumptions that b -4 1 and that E = (Ma-Ma,) /Ma,  4 1 in 
which case the application of the multiple-scale perturbation technique allows the 
problem to be reduced to a one-dimensional equation for the temperature 

8, + &8ssz, + 68 + s[8, - EE 8: + EE 8,8,,], = 0 (52) 

a, O(0) - bO(0) = 0. 

T(x, z) = - z + 8(x) (54) 

because the wavelength of the unstable mode tends to zero in the limit b+O. Our 
governing equations (23F(31) formally correspond to the case b+m. At first glance, 
it may not seem a good idea to compare a model with b -4 1 to numerical simulations 
for b % 1. Therefore we have performed additional direct simulations of the governing 
equations with the bottom boundary condition (53) for different values of b, including 
the cases b < 1. The results of these simulations show that the particular value of b does 
not have any significant influence on the nonlinear generation of small-scale structures 
(cf. figure 5 ) .  The value of b only influences the large-scale properties of the convection 
by favouring larger periodicity lengths which is a linear effect. 

We have performed a series of numerical simulations of equation (52) with 
parameter values e % 1 deliberately violating the assumption e 4 1 of the Sivashinsky 



222 A .  Thess and S.  A .  Orszag 

FIGURE 9. (a) Stationary solution O(x) of the one-dimensional Sivashinsky equation for E = 20, 
b = 660, N = 2048, together with the first (b) and second (c) derivatives. 

theory in order to check if the model reproduces the behaviour of the system in the 
strongly nonlinear regime, at least qualitatively. We use a pseudospectral method with 
2048 collocation points in combination with the ‘ slaved frog’ time-stepping scheme 
(Frisch, She & Thoual, 1986) in order to correctly resolve the dynamics of the small 
scales, which adiabatically follow the large scales. Random initial conditions are used 
in all simulations. 

Our numerical results, summarized in figure 9, demonstrate that the nonlinear terms 
of (52) reflect some important aspects of convection. For fixed b, a periodic solution 
bifurcates supercritically from 8 = 0 as soon as E > (4b/15)lI2 with a wavenumber 
k = (1 5 l~ )”~ .  The solution has a sinusoidal shape as long as E exceeds only slightly the 
critical value. For higher values of E ,  equation (52) reproduces the formation of 
discontinuities of the temperature gradient as the essential nonlinear features of the 
temperature field. The results plotted in figure 9 demonstrate the departure of the 
temperature from a sinusoidal shape (figure 9 a), the sawtooth structure of a, B (figure 
9b) and the tendency of the second derivative (figure 9c) to develop singularities. We 
have found that the equation yields the correct one-dimensional spectrum E - E4 in 
the case E % 1. Other important features are lost in the course of the derivation. In 
particular, the Nusselt number, corresponding to the integral over 8, is a conserved 
quantity and remains zero if it is zero in the initial condition, in contrast to the full 
problem. The possibility of hydrothermal unstable waves, which are known to exist if 
the temperature gradient at the free surface become sufficiently high (Smith & Davis 
1983), is sacrificed with the simplified ansatz T = -z+ 8(x).  It would be interesting to 
see if higher-order terms in the multiple-scale method used by Sivashinsky can recover 
this important mechanism for secondary instabilities. Still, the correct reproduction of 
the one-dimensional temperature spectrum and of the curvature singularities 
encourages us to recommend the use of the two-dimensional extension of (52), given 
by Sivashinsky (1 982), for the modelling of patterns in Benard-Marangoni instability, 
even at high Marangoni numbers. More precisely, the use of the two-dimensional 
model instead of the three-dimensional equations would allow simulations at much 
higher lateral resolution thereby giving the possibility to explore the ‘inertial range’ of 
the temperature field in more detail. 
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6. Numerical shadowgraph images - a bridge between theory and 
experiment 

The prediction of a universal spectrum of the surface temperature can be tested in 
an experiment, albeit not directly. Since the surface temperature itself is not easily 
accessible to measurements, we shall translate our results into the language of 
experimental quantities amenable to direct measurements. In previous experimental 
studies of BCnard-Marangoni convection, shadowgraph methods were used for the 
flow visualization. Let us briefly recall the basic ideas of this method and derive the 
relation between the three-dimensional hydrodynamic quantities and the measured 
two-dimensional distribution of light intensity in the shadowgraph image. Our 
calculation is a generalization of the work of Jenkins (1988) to the case where the z- 
dependence of the temperature field is explicitly known. 

When a beam of parallel light shines onto an isothermal layer of transparent fluid 
with a non-deformed surface, the beam is reflected at the bottom z = 0 and its image, 
recorded on a distant screen, has a uniform brightness po .  In the convective state, the 
inhomogeneous temperature T(x, y ,  z )  and the surface deflection h(x, y )  cause the light 
beams to be deflected. This deflection, yielding a deviation Sp(x,y) from the 
homogeneous distribution, carries information about the temperature and the surface 
deformation. The two mechanisms are sketched in figure 10. We shall focus on the 
temperature field since we consider a non-deformed surface in our model. If the surface 
is not deformed (figure IOU) ,  the trajectory [x(z),y(z)] of a light ray within the non- 
isothermal fluid is governed by the differential equations 

where no is the refractive index of the fluid at T = T, and dno/dT is the coefficient of 
temperature dependence of the refractive index, i.e. n(T) x n,+(dn,/dT) (T-  T,). 
Equation ( 5 5 )  holds for (dn,/dT) 4 1. For silicone oil no x 1.4 and 

dno/dT NN lop4 K-'. 

The ray is reflected at the bottom, 2, and leaves the fluid, after having traversed the 
layer for the second time, at point 3, differing from the entry point 1, by the vector 
so (cf. figure 10a). Here n is the direction of the outgoing ray. The image of the ray 
arrives at the screen, which is supposed to be located at a distance H + d from the free 
surface. The displacement sl(x, y )  completely determines the intensity distribution 
6p(x, y)/po of the shadowgraph pattern. In general, the determination of Sp/po requires 
the solution of the system ( 5 5 )  which is nonlinear because T is a function of the space 
coordinates. Moreover, the relation between &/p, and the displacement s, cannot 
usually be expressed analytically. Fortunately, an analytical expression for 6p/p, as a 
function of T(x, y ,  z )  can be given under the simplifying assumption [sol 4 Is,1 4 1 
which is satisfied in all experiments. The assumption Is,[ 4 1, which is met due to the 
smallness of dno/dT, allows us to express the shadowgraph intensity as 

6PlPo = - a x s , x - a , s , , .  (56) 

slX NN Hn,, sly % Hn, (57) 

The assumption (so( 4 (sll, justified by H % d, allows us to use 
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FIGURE 10. Deflection of a beam of light due to (a) inhomogeneous temperature distribution, (b)  
surface deflection. 

for the determination of s1 without taking into account the contribution from so. 
Finally, the smallness of dn,/dT permits us to treat a, T and ay Tin  ( 5 5 )  as functions 
of z only, evaluated at the entry point (x,,y,) of the light ray. Equations (55) can then 
be solved analytically yielding the trajectory 1 + 2  + 3  in figure 10(a) and, taking into 
account the refraction at the free surface, the components of n. With this step done, the 
shadowgraph field is readily derived as 

Here we have used physical variables, and we have replaced T by 8 because 
a,T=a,f?and a,T=aY6'. 

Using elementary rules of geometric optics, the shadowgraph field due to surface 
deflection h(x,y),  sketched in figure lO(b), is determined as 

(59) 

In principle, both effects are present in an experiment. We remark parenthetically that 
the surface deflection can be calculated from the velocity and pressure field at the free 
surface using the Laplace condition. 

Equation (58) reveals that the shadowgraph function is proportional to the two- 
dimensional Laplacian of the vertically averaged temperature perturbation. Thus, the 
shadowgraph image has the same spectral properties as the Laplacian of the surface 
temperature, but is more smooth owing to the averaging in the z-direction. In figure 
11 we plot shadowgraph fields obtained from the temperature distributions for 
Ma = 80 and 150 through equation (58). Although the contrast of the small-scale 
structures is less pronounced than in the plots of A2 8, (figure 6 )  the knots between the 
convective cells are readily seen as intensity maxima. The prediction E - k-3 for the 
temperature field implies E, - k for the spectrum of the shadowgraph field, which can 
be tested experimentally. 

Sp/p, = - H(2n, - 1 )  (a: fa t )  h. 

7. Conclusions and further developments 
We have performed direct numerical simulations of BCnard-Marangoni convection. 

The numerical results demonstrate that the generation of hexagonal convective cells is 
possible by surface forces alone in agreement with Pearson's (1958) results. The 
decrease of cell size with increasing Ma for weakly supercritical flows is in qualitative 
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FIGURE 1 I. Numerically generated shadowgraph images : plots of A* J: B(x, y ,  z) dz for (a )  Mu = 80, 
and (b) Mu = 150. Aspect ratio 20. White [black] corresponds to maximum [minimum] of the field. 
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agreement with experiments in shallow fluid layers. Our numerical calculations are free 
of the influence of gravity and constitute therefore a perfect microgravity environment. 
For some parameter values, they proceed faster than a real-life laboratory experiment. 
Performed in conjunction with carefully controlled laboratory experiments on Earth, 
they provide an attractive alternative to expensive microgravity experiments aboard 
spacecrafts with low availability. The addition of buoyancy forces to our theoretical 
model, which can be done at slightly increased computational cost, gives the possibility 
first to test the numerical code by quantitative comparison with experiments and then 
to use the code to extrapolate the results to the microgravity limit g-z0. Addition of 
the buoyancy force would also be interesting for a better understanding of the 
suggestion that gravity is responsible for the fact that the cell size begins to increase 
when the Marangoni number becomes larger than twice its critical value (Koschmieder 
& Switzer 1992). We could not find evidence for the existence of flows for subcritical 
Marangoni numbers as small as reported by Koschmieder & Biggerstaff (1987). The 
explanation of the latter must be sought in the influence of the surface deformation or 
buoyancy. 

Our numerical simulations permit the study of pattern formation in large-aspect- 
ratio geometries, thereby giving the opportunity to critically assess the predictive 
power of nonlinear amplitude equations that have hitherto been considered as the only 
theoretical tool for the study of pattern formation in fluids. In this paper, we have 
shown that the Sivashinsky equation (52) is capable of reproducing the generation of 
the essential nonlinear structures (discontinuities of the temperature gradients) but fails 
to grasp hydrothermal waves. Since the speed of our numerical computation in 
comparison with experiments relies on the low Reynolds number of the flow, rather 
than on particular mathematical features of the theoretical model, our approach can 
be extended to other pattern-forming convective systems like Rayleigh-BCnard 
convection, binary convection and thermosolutal convection. 

We have demonstrated that for high Marangoni numbers non-trivial small-scale 
structures are generated in surface-tension-driven Benard convection which yield a 
spectrum E - kP3 of surface temperature. This prediction can be translated into the 
language of experiments, predicting a spectrum of the shadowgraph pattern 
proportional to k. 

behaviour holds for a large 
range of Marangoni numbers, the (mathematical) problem of understanding the 
asymptotic regime for Ma +co remains unsolved. It is very likely that time-dependent 
states emerge from the quasi-stationary structures plotted in figure 7 above 
Ma - 300W000, which is unfortunately beyond our present numerical capabilities. 
The properties of the Mu-tco regime will certainly be different from classical 
Kolmogorov turbulence, since only the Peclet number tends to infinity whereas the 
Reynolds number remains small by virtue of the definition of the infinite Prandtl 
number model. Nevertheless, the following qualitative argument shows that flows with 
spatietemporal irregularity are to be expected in this asymptotic regime. If we 
consider purely two-dimensional solutions to (25), confined to the (x, y)-plane, we can 
introduce a stream function $ with v, = 8, $,, v, = -8, ~ and rewrite (25) in the form 

where L,, is an abbreviation for the Stokes boundary value problem determining the 
stream function as a function of the temperature perturbation, and J K g )  is the 
Jacobian. Equation (60) has a formal analogy to the quasi-geostrophic model 

It is important to emphasize that, although the E - 

a,e-J($,e) = -a,$+vze, LMa$ = 0, (60) 
1 

a,w-J($,u) = $a,l,h+VAw, A @ =  --w (61) 



Surface-tension-driven Binard convection 227 

1 

Z 

0 1 

X 

FIGURE 12. Streamlines of a kinematically possible velocity field for random surface temperature. 

of two-dimensional atmospheric turbulence. The temperature perturbation formally 
takes the role of vorticity. While the linear term in (60) is responsible for an instability, 
the p-term in (61) describes Rossby waves. For v 6 1 the solutions to (61) are in general 
turbulent and similarly ' thermal turbulence ' can be expected for sufficiently high 
Marangoni numbers - for two as well as for three dimensions. Figure 12 shows the 
streamlines of a velocity field generated by a random surface temperature distribution 
as solutions of the Stokes problem in Btnard-Marangoni convection. It reveals that 
the kinematically possible velocity fields can have remarkable complexity, and it is a 
challenging problem for future studies to understand Btnard-Marangoni convection 
in the limit Ma+co. 
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Ma 

70 
80 
90 

100 
500 

1000 

70 
80 
90 

100 
500 

1000 

Bi 
0 
0 
0 
0 
0 
0 

1 
1 
1 
1 
1 
1 

h 

-0.732 128060 
0.029 661 942 
0.780 33691 3 
1.520 638 207 

26.361 959357 
51.385372968 

- 3.168955695 
- 2.495 744560 
- 1.829 547 320 
- 1.170020621 
21.761 508688 
45.525274684 

TABLE 2. Growth rates of Benard-Marangoni instability calculated from linear stability theory 
for infinite Prandtl number and k = 2 

Appendix. Growth rates of the primary instability 

the form 
We wish to compute the growth rate h(k, Ma, Bi) of infinitesimal perturbations of 

D W(4, (A 1) = e l e A t + i k x  

" k  

u, = eeAt+ikx W(z), 

G ( 4 ,  ,y = eeAt+ikx 

with D = d/dz and e+ 0. This is a generalization of Pearson's (1958) calculation of the 
neutral curve Ma(k,Bi) from the assumption h = 0. The linear stability problem 
derived from the governing equations (23)-(3 1) is 

(D2-k2) 'W= 0 

[h - (D2-k2) ]G  = W, 

with the boundary conditions 

W(0) = D W(0) - W( 1) = D 2  W(1) +Ma k2G( 1) = 0, 

G(0) = DG( 1) + BiG( 1) = 0 .  
(A 6) 

(A 7) 

In principle, the desired growth rate can be obtained by writing down the general 
solution of (A 4) and (A 5), enforcing boundary conditions (A 6) and (A 7) to derive a 
system of six linear equations for the six unknown coefficients, and requiring the 
determinant of the corresponding matrix to be zero. However, the solution can be 
accomplished in a slightly more elegant fashion owing to the particular structure of the 
boundary conditions. 

Since the problem is linear, we can freely choose the amplitude of either W and G. 
The particularly convenient gauge 

G ( l )  = 1/(Mak2) (A 8) 

allows us to eliminate the temperature perturbation from the equations for W, which 
can then be solved explicitly as 

W(z) = w1 sinh (kz) + w2 z sinh (kz) + w3 zcosh (kz)  + w4 cosh (kz). (A 9) 
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The coefficients are determined by the boundary conditions (A 6 )  and w4 = 0. Knowing 
W, we solve (A5) for G which yields 

W 
G(z) = 2 sinh (kz) + w, 

h 

+ g, sinh [(k2 + h)1/22] + g ,  cosh (k2 + h)1/2z]. (A 10) 

The coefficients g, and g ,  of the homogeneous solution are determined by the boundary 
conditions (A 7 ) .  The desired growth rate is obtained by requiring G( 1) as calculated 
from (A 0) to satisfy the assumption (A 8), from which we derive the implicit expression 

1 
M a k  

F(h, k, Ma, Bi) = G( 1) -7 = 0. 

The expressions for the coefficients w,, w,, w3, g , ,  g, as functions of A, k and Bi can be 
readily derived and shall not be given here. Equation (A 11) is solved numerically by 
finding zeros of F(h) for given values of k, Ma and Bi. The results are summarized in 
table 2. 
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